<u>Lecture d': Gharged systems</u> Gharges arc abundant in classical systems
Solvent + ions (Nat, H⁺, Mg²⁺, Ge²⁺, G¹, Br⁻,...) NaCl MyCl₂ uss. Unstead of explicitly including solvent $\epsilon_o \rightarrow \epsilon$ (dicletric continuum) For example, only two species of ions: $H(r_+^n, \vec{p}_\pm^n) = \sum_{\alpha=1}^n \sum_{i=1}^n \frac{\vec{p}_{i\alpha}^2}{2m\alpha} + \sum_{\text{non-electrostatic}} (\vec{r}_\pm^n) + \sum_{\alpha=1}^n (\vec{r}_\pm^n)$ $\Phi_{ele}(r_{t}^{N}) = \sum_{i \in j} \sum_{j} \phi_{x_{m}}^{G}(r_{i_{m}}^{N}r_{j_{m}}^{j}) + \frac{1}{2} \sum_{i=1}^{M_{4}} \sum_{j=1}^{N_{-}} \phi_{i_{m}}^{G}(r_{i_{j_{m}}}^{N} - r_{j_{j_{m}}}^{N})$ 2. valence of an ion. With Goulomb potential: $\oint_{\alpha\beta}^{c(\nu)} = 2\pi 2\beta \frac{\varepsilon^2}{4\pi \varepsilon_0 \varepsilon_r r}$ E_{α} E_{Na1} = H Er: relative dielectric permittivity. $2c_1 - 2c_1$ eg. vater: Er=80. e: elementary charge mit. $\circ i l$: $\epsilon_{r} = 2 - \delta$. For simplicity: $\beta \phi_{\alpha\beta}^G(r) = \frac{2\alpha^2 \beta}{4\pi\epsilon_0 \epsilon_0 r}$ = $\frac{3\alpha^2 \beta}{4\pi\epsilon_0 r}$ Mg: Bjernun length: Seperation between two equal point changes for which the G outomb potential equals $k_{\rm B}T$. Observe ϵ_r Λ l_B l_V : Easier to seperate changes with thermal fluctuations $\frac{1}{2}$
Objective: Thermodynamic properties of an ivide solution. vacuum: $l_B = \frac{1}{2}$ of $\frac{1}{2}$ froblem: Virial expansion $B_2^{\prime\prime$ is divergent: Virial expansion is not good method !

Instead , we use the caloricroute to thermodynamics. Instead, we
Recall: $\frac{\mathcal{U}}{\mathsf{N}}$ Generalisati = Ale caloric rocte to therm
 $\frac{3}{2}$ le $\sqrt{\frac{1}{2} + \frac{9}{2} \int dr}$ g(r) v(r) Generalisation to multicomponent mixture: Guneralisation
1
N = $\frac{3}{2}k_8$ Radial distribution function gap(r) = g par(r) e the caloric rocke to thermodynomics.
 $\frac{3}{2} k_B T + \frac{\rho}{2} \int dr g(r) v(r)$

to multicomponent mesture:
 $+ \frac{\rho}{2} \sum_{\alpha \in \beta} x_{\alpha} x_{\beta} \int dr' v_{\alpha} \rho(r) g_{\alpha} \rho(r)$
 $x_{\alpha} = \frac{N_{\alpha}}{N}$

sultion function $g_{\alpha\beta}(r) = g_{\beta\alpha}(r)$

fre of Partide in centre of type or ; or probability to find particle of type } probability to find pournell of Or particle of type ^B in center and then probability to find particle of type^a We have the constraint N⁺ ⁺ N . =N but in charged systems, we have \sum_{α} z_{α} N $_{\alpha}$ = \circ (global charge For simplicity, take \mathbb{E}_{\pm} = ±1 and defining $\phi_c(r) = \frac{k_B k_B}{r}$, we find for the excess internal energy : $\frac{dV_{ex}}{dr} = \frac{1}{2} \int dr \Phi_c(r) g_s [g_{++}(r)]$ $c^{(r)}g_{s}\left[q_{++}(r)+q_{-}-1-r-2q_{+-}(r)\right].$
 $\frac{N_{+}}{\sqrt{2}}= \frac{N_{-}}{\sqrt{2}}$ $P_{s} = \frac{N_{+}}{N_{-}} = \frac{N_{-}}{V_{-}}$ If we tale moreover same hardcore diameter 6: $g_{1+}(c)$ = $g_{-}(c)$ (restricted primitive model)
0) $\int d\vec{r}$ - $\int d\vec{r}$. Simple approximation (Debeye, Hückel, 1920) $\int d\vec{r} \rightarrow \int d\vec{r}$ g + + (r) = e - (r)
2 average electrostatic potential s.t. another con
with change te has electrostatic energy text (r)

 $\boxed{2}$

It is convenient to introduce a dimensionless electrostatic potential
$$
\varphi(v) := \rho \varphi(r)
$$

Then average charge density $cQ(r)$ around a cation in the origin is given by:
 $Q(r) = g_s [g_{+s}(r) - g_{+s}(r)] = -2g_s \sinh[\varphi(r)]$

Second approximation $\varphi(r)$ <<1 => (2(r) =-2 $\varphi_{s}\varphi(r)$ Twounknowns : mation p(r) <<1 => (2(r) =-2g_s p(r)
p(r) and (2(r). Additional relation comes from Poissonegh:

It is convenient to introduce a dimensional set of rootable polantial
$$
\varphi(v) := \rho_{\alpha\beta}(v)
$$

\nThen always changing $cl(x)$ = $8 \epsilon \theta + (r) - \theta + (r) = -2\theta \epsilon \sinh(\varphi(v))$
\n $l(\alpha) = 8 \epsilon \theta + (r) - \theta + (r) = -2\theta \epsilon \sinh(\varphi(v))$
\n $l(\alpha) = 8 \epsilon \theta + (r) - \theta + (r) = -2\theta \epsilon \sinh(\varphi(v))$
\n $l(\alpha) = 8 \epsilon \theta + (r) - \theta + (r) \leq 1 \Rightarrow \hat{Cl}(r) = -2\theta \epsilon \psi(r)$
\n $l(\alpha) = -4\pi \epsilon \theta \left[\frac{Q(r)}{Q(r)} + \frac{Q(r)}{Q(r)} \right]$
\n $\Rightarrow \nabla^2 \varphi(r) = -4\pi \epsilon \theta \left[\frac{Q(r)}{Q(r)} + \frac{Q(r)}{Q(r)} \right]$
\n $\Rightarrow \nabla^2 \varphi(r) = \nabla^2 \varphi(r) = \nabla^2 \varphi(r) \Rightarrow \nabla^2 \varphi(r) = -1$
\n $\Rightarrow \varphi(r) = \nabla^2 \varphi(r) = -1$

10e find:
$$
\frac{u_{ex}}{n\theta_{B}}
$$
 = $\frac{u_{bg}}{n}$ + $\frac{1}{n}$
\n110te: $u^{ex} \leq 0$: central ion is on average surrounded by
\n110te: $u^{ex} \leq 0$: central ion is on average surrounded by
\n110te: $u^{ex} \approx \frac{q^{11}}{N}$ Different from eq. L³ particles where $\frac{u^{ex}}{N\theta_{B}}$ or q
\n110thmole of long-range character of Coulomb interactions.
\n110thmole of long-range character of Coulomb interactions.
\n11111 = $(\frac{\partial H}{\partial P})_{N_1N_1T}$ $\beta \approx 0$ (high T limit is Hs)
\n12) $\beta F = \beta F_{H5} + \int_{0}^{\beta} J_{\beta}^{H} u(\beta')$
\n130 the com use a coupling parameter integration to find:
\n $\frac{F - F_{H5}}{\sqrt{F_{H}}}$ = $\frac{-u^3}{d\pi} \int_{0}^{1} dx \frac{\sqrt{1}}{1 + \sqrt{16}} \frac{1}{\sqrt{16}} = -\frac{u^3}{d\pi} \frac{2 \log (1 + u^3) - 2u(5 + (u^3)^2)}{(u^3)^2}$
\n210 the *u*-density limit or equivalently σ -30
\n $\frac{F - F_{H5}}{\sqrt{F_{B}}}$ = $-\frac{u^3}{12\pi}$ or $-\frac{3}{3}\pi$. However, F_{F5} first are correct to
\n110thm

Furthermore, note that limiting law implies the presence of a gas-liguid phase transition]
\nphase transition]
\n
$$
\beta p \ge 2 \frac{1}{8} \sum_{n=0}^{k} \frac{1}{6} \frac{1}{4} \frac
$$

⑤

Let us neglect correlations. Take an s-component electrolyte with density profiles &poli)] and valencies zg ¹⁰ ⁼ ¹ , ,5) in astructureless medium of dielectric constant - ⁼ Estr. We also include the presence of non-Goulombic external podentials Ve** (i) (4 ⁼ / , . . . ,5) and electrostatic external potentials characterised by the external electric potential Per Within the mean-field approximation we find for the intrinsic Helmholtz functional : ElpS] : ~ did G~ non-Giculambic mean-field electrostatic contributions. NotethatF is unique functional of [poli) =) so is ^G . Grand potential functional is given by : evthpo3] ⁼ FEEpo3]-Zfd: [Mo-Ve* (i) zetext (*)]p() ↓ ↓ ↓ external chemical external non-Sculombic electric potential of species & Euler-Lagrange equations : &] ⁼00⁼ Mo) ⁺ ze) with Ternal chargedistributin Let us write : ^a

⑥

Therefore,
$$
\psi(\vec{r}) = \int d\vec{r}' \frac{q_{ext}(\vec{r}') + \sum_{\beta} g_{\beta} e_{\beta \beta}(\vec{r}')
$$

4 $\pi \epsilon_{\alpha} \epsilon_{\alpha} |\vec{r}-\vec{r}'|}$

$$
\sqrt{3}^{4kat}
$$
 $\sqrt{2}|\vec{r}-\vec{r}'| = -4\pi \delta(\vec{r}-\vec{r}')$, we find:

Therefore,
$$
\psi(\vec{r}) = \int d\vec{r}' \frac{det(\vec{r}') + \sum_{\vec{l}} exp_{\vec{l}}g_{\vec{l}}(\vec{r}')
$$

\nUsing that:

\n
$$
\nabla^{2} |\vec{r} - \vec{r}'| = -4\pi \delta(\vec{r} - \vec{r}')
$$
\n
$$
\mathcal{U}_{\text{sing}} + \mathcal{U}_{\text
$$

 η

Semplest approximation:
\n
$$
G[\lambda g f] = k_{B}T \sum_{\alpha} [d\vec{r} g_{\alpha}(\vec{r}) [ln(g_{\alpha}(\vec{r})\lambda_{\alpha}) - 1] \qquad of species a .
$$

Or1455 - MeV =
$$
\frac{1}{2}
$$
 or $\frac{1}{2}$ or $\frac{1}{2}$ or $\frac{1}{2}$ or $\frac{1}{2}$ or $\frac{1}{2}$

\nConstancy of chemical potentials yield $\frac{1}{3}$ and $\frac{1}{3}$.

\nAssume $r \rightarrow \infty \Rightarrow 3 - (7) + k_0 T \ln \left[3n(7)/\frac{3}{2} \right]$.

\nAssume $r \rightarrow \infty \Rightarrow 3 - (7) \rightarrow 3 - (7) \rightarrow 6$ and $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$.

\nAssume $r \rightarrow \infty \Rightarrow 3 - (7) \rightarrow 6$ and $\frac{1}{2}$ and $\frac{1}{2}$.

\nThus, $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$.

\nThus, $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ are $\frac{1}{2}$ and $\frac{1}{2}$.

\nThus, $\frac{1}{3}$ and $\frac{1}{3}$ are $\frac{1}{3}$ and $\frac{1}{3}$.

\nThus, $\frac{1}{3}$ and $\frac{1}{3}$ are $\frac{1}{3}$ and $\frac{1}{3}$.

\nThus, $\frac{1}{3}$ and $\frac{1}{3}$ are $\frac{1}{3}$ and $\frac{1}{3}$.

\nThus, $\frac{1}{3}$ and $\frac{1}{3}$ are $\frac{1}{3}$ and $\frac{1}{3}$.

\nThus, $\frac{1}{3}$ and $\frac{1}{3}$ are $\frac{1}{3}$ and $\frac{1}{3}$.

\nThus, $\frac{1}{3}$ and $\frac{1}{3}$ are $\frac{1}{3}$ and $\frac{1}{3}$.

\nThus, $\frac{1}{3}$ and $\frac{1$

⑨ $q_{ext}(7) = \sigma \delta(x)$ 620. Let us consider a simple example.
 $Q = \frac{P(x)}{P(x)} = \frac{P(x)}{$ L constant
I surface charge density. $V_{\alpha}^{ext}(z) = \begin{cases} \infty & z<\circ \\ \circ & z>\circ. \end{cases}$ $\frac{e_{t}(t)}{e_{t}(t)}$ (counterions) the surface continuous monovalest salt: ======== charge denging p+ $b = 9 - 9$ => Pt(r) ⁼ $\begin{cases} 86 \text{ exp}[\mp \text{ke}(2)] & \neq 0 \\ 0 & \neq 0. \end{cases}$ PBegn becomes : $P+^b = P-^b = Pb$
 $P[F \neq p(\pm)]$ ± 30
 ± 20
 ± 20
 ± 20
 ± 30
 ± 30
 ± 66
 \pm $B.C.$: $\gamma(z) \rightarrow o$ for $z \rightarrow o$ (global charge neutrality). $B.C.: \quad \gamma(a) \rightarrow o \quad \text{for} \quad a \rightarrow o \quad \text{(global charge new)}$
Analytically solvable problem $\frac{d\psi}{d\epsilon}\Big|_{\epsilon=0^+} = -\frac{\sigma}{\epsilon_0\epsilon_r}.$ = $9\pm(\pi)$ = $9\pm(\pi)$ = $9\pm\sqrt{(\pi)}$ = $9\pm\sqrt{(\pi)}$ = $\frac{1}{4}\pm\sqrt{(\pi)}$ = $\frac{2e\pi}{6e\pi}$ sink [fect(t)] (270)

Big = $9\pm\sqrt{(\pi)}$ = $\frac{1}{4}\pm\sqrt{(\pi)}$ = $\frac{2e\pi}{6e\pi}$ sink [fect(t)] (270)

B.C.: $\sqrt{(\pi)}$ - π $\frac{1}{4}\pm\sqrt{(\$.
.) Suppose in addition we have a set of charged surfaces/particles Suppose in addition we kave a set of charged surfaces) part
Shich do not have a fixed position in an electrolyte solution. (simplicity monovalet) From Lecture 11: $e^{-\beta\Phi_{eff}(\vec{R}^H;\mu_{i}T)} = e^{-\beta\Phi_{bare}(\vec{R}^H)}e^{-\beta W(\vec{R}^H;\mu_{\pm},V,T)}$ $\int_{0}^{\frac{1}{2}} e^{-\beta y}$ J
e.g. hard-cove inhomogeneous ionic fluid
d'etc. T) in fixed configuration of $(\vec{R}^N,\mu_L)^{(1)}$ particles $2\vec{R}^N$ $=$ W = m in $\Omega_V L_{9\pm}$; \vec{R}^N] Because changes on particles are MM $SLV LgzjK$] Because changes on pour
le coften of ionic nature, cf len of ionic nature, it is convenient to include the electrostatic

\n
$$
\text{place of the particle-particle interaction in } Q_{V}[Q_{\pm}, \vec{R}^{N}],
$$
\n

\n\n That is, we arrive at the Poisson-Bolemann function.)\n

\n\n (non-electrostatic part is ideal gas.)\n

\n\n
$$
Q_{V}[Q_{\pm}, \vec{R}^{N}] = \frac{1}{2} \int 4\vec{r} \int 4\vec{r} \cdot \frac{[Q(\vec{r}) + q(\vec{r})][Q(\vec{r}^{N}) + q(\vec{r})]}{4\pi \epsilon_0 \epsilon_1 |\vec{r}^{N}|} \left[\frac{Max-f_{\text{el}}H}{\text{luctrostatic}} \right]
$$
\n

\n\n
$$
+ R_{\text{el}}T \sum_{\alpha} \int 4\vec{r} \cdot q_{\alpha} (\vec{r}) \left[ln (Q_{\alpha} (\vec{r}) / \lambda_{\alpha}^2) - 1 \right] \text{ non-electrostatic integral gas} \left[- \int 4\vec{r} \cdot \frac{Z}{\sqrt{2}} [\mu_{\alpha} - \mu_{\alpha}^{\alpha+} (\vec{r})] \rho_{\alpha} (\vec{r}) \right],
$$
\n

\n\n (i) $\vec{r} \sum_{\alpha} \left[\mu_{\alpha} - \mu_{\alpha}^{\alpha+} (\vec{r}) \right] \rho_{\alpha} (\vec{r})$, $\vec{r}_{\alpha} \text{ is the real point in } \vec{r}$.\n

\n\n (ii) $\vec{r} \text{ do have } \vec{r} \text{ mod } \vec{r}$ is a closed point on the case of the two charged and the two charged particle, and the

Low surface potential, linear superposition approximation

