
①
Lecture d : Charged systems

dissociates

Charges are abundant in classical systems ! anions ↓ becauseoa-

Solventions(M,
CdB ... ). Nad MyC

us

Instead of explicitly including solvent to
-> E (dielectric continuum /

For example , only two species of ions :

H() =E (") + Fu (*)+ Bonelectrostate
& VdW

,
hard-core etc

+Zo : valence of an ion.

#r : relative dielectric permittivity . zq - = Y

e .

g.
water : Ev = 80 .

e: elementary charge unit.
oil : Er = 2-d .

For simplicity : Bor =zoz
↳ : Bjerrum length : Separation between two equal point charges for

which the Goulomb potential equals KIT. .

Observer& lit : Easier to separate changes with thermalfluctuations7
eg water E30oK : &B = 7 .2A

Objective : Thermodynamic properties of an ionic solution . vacuum: I =54nm

Problem : Virial expansion BI(T) = Shrte-PR(-1]
is divergent : Virial expansion is not good method I



②
Instead

,
we use the caloric route to thermodynamics.

Recall: = EhT+dig(r)
Generalisation to multicomponent mixture:

#T+
Radial distribution function gop(r) = gar)
Particle in centre of type o; a probability to find particle ofdypes

in spherical shell of thickness dr.

Or particle of type B in center and then probability to find particle of typea

We have the constraint N + + N . =N

but in charged systems , we have IzoNoto (global charge
neutrality).

For simplicity , take z1 : Il

and defining Pa(r) = Eth ,
we find for the excess internal
energy

:

= farr)p[g++ (n +g-(r) - 2g+- (r)]

Ps
:N

If we take moreover same hardcore diameter 2 : g ++
(d) = g-(r)

Crestricted primitive model)

Simple approximation (Debege , Huckel , 1920) Sar-Sar

g+ (r) = e
- Bey| (r(a)
&
average electrostatic potential s.t . an other con
with charge It has electrostatic energy tep (r)



③
It is convenient to introduce a dimensionless electrostatic potential y(v) : = Dethol
Then

average chargedensity eQ(r) around a cation in the origin is given by:
Q (r) = ps (g ++ (r) - y+ (r)] = - 29ssinh[g()]

Second approximation y(r) < 1 => Q(r) =29, y(r)
Twounknowns : y(r) and G(r)· Additional relation comes from Poissonegh :

*
-

y(r) = - unlB[Q(r) +G(i)]

=> Figh =[2
= pil

y() =G
u" = l

, Delaye length.

Impose : o y(r) +0(r+x)

· y(r) continuous at v = 5 . (no dielectric constant jump
So we find : yhrl = expee (e)

Screened electrostatic potential .
with Debye length being the characteristic
decay length.

Note that: Sd= Q(r) = -
>5

=> central charge is on average surrounded by an opposite charge -e
and one finds Q(r) 0 exp(-ur) /r .

Charge cloud "screens" central charge = yerl a f-ph



⑭
We find:ex
Note:· U

*
Co : central ion is on average surrounded by

an ion cloud of the opposite charge
· Nex & Different from e.g.. Ly particleswhere

independent of 5. first correction
(no21) always dependsond

Hallmark of long-range character ofCoulomb interactions.

Recall : U = (NuT $0 (high t limit is Hs)

=> DF = BFustSoPdBUIpY
So we can use a coupling parameter integration to find :

EFg(it)-2
u

In low-density limit or equivalentlyao

· LviviasirHowever
s

first
ordercortas

For water at room temperature , limiting low is accurate
up to &S < 100mMD

Very large regime where linear screening theory is accurate .



⑤
Furthermore

,
note that limiting law implies the presence of a gas-liquid

phase transition.I corrections from
E

Limiting Law.

Bp = 29s- .. cohesive nature of Goulomb
↑ forces-
von't Hoff
law

=> Gas-liquid phase transition (F can develop concave part) .

T
Introduce quantity T

*=
RB

For DH free energy ,
wefind To ob (MG of RPM has

Tc* 0 . 05)

For water at room temperature with NaCiL T& = 0 .3) Tc*

(not expected to observe phase transition)-

Gandidate systems : · Lonin oils (t =P) &7 .2 nm

(Bjerrum pairs though).
· Multivalent ions

#homogenouschargedsystem
Then :

g(2 (vi) =2)
Define : N(i) = vo(iii) + Ju , (2) .

Functional integration :

Featp] = Et[p] + Efdrfdrp()pr) v , (i) + Forr[p] .
For[p] = Ex(difdpp()((((0 ,(i) .



⑥

Let us neglect correlations.Take an s-component electrolyte with density
profiles &poli)] and valencies zg 10 = 1

, .
. .
. , 5) in astructureless

medium of dielectric constant - =Estr . We also include the presence

of non-Goulombic external podentials Ve
** (i) (4 = /, . . . ,5)

and electrostatic external potentials characterised by the external
electric potential Per
Within the mean-field approximation we find for the intrinsic
Helmholtz functional :

ElpS]:did G
~

~ non-Giculambic

mean-field electrostatic contributions.

Note thatF is unique functional of [poli) =) so is G.
Grand potential functional is given by :

evthpo3] = FEEpo3]-Zfd: [Mo-Ve
*(i) - ze text (* )]p()

↓ ↓ ↓
externalchemical external

non-Sculombic electric
potential
of species &

Euler-Lagrange equations :

&]
=00 =Mo) +ze)

with

Ternal chargedistributinaLet us write :



⑨
Therefore , plr =JarPli

#
Simplest approximation: -

> thermal de Broglie wavelength
6 [hpoS] = kyT[fdrpoli) [enPoli18) - 1] of species o

- Poisson-Boltzmann theory , using

Constancy of chemical potentialsyieldT(n[p(1] :
Mo = Ve

+
(+) + zgep(i) + hyTI[poli18] .

Assume rea = po(v) -> Pg8 =, ..... Su
- bulk con density

Mo = Vext(0) + zep(e) + kpTenbN)

=>=expex(i) -VEx
+

(x)) + zoe[y(r)-+(a))))
-

external electrostatic ,

This is aBoltzmann distribution I Substitution in Poisson equation
·

gives
/r) =-epexp) .... ) Poisson - Boltzmann egnationa



⑨

&ext(i) = 2 d(z) 520
.eE constant tchargedensity.

zL0

p- (t) (co-ions)
&
regative surface monovalent salt : zx = -E=1 .

charge density
p+
b
= p-b = p

=> Pt(r) = 86 exp[FBey(z)] zoI O zLo .

PBegn becomes :& sinh[pe]

B .C: p(z) +0 for z-0 (Global charge neutrality).

Analytically solvable problem t zo+tr&

Effective interactions (no image charges),
-

Suppose in addition we have a set of charged surfaces/particles
which do not have a fixed position in an electrolyte solution. (simplicity

monovalet)
From Lecture 11 :

e-B(r ;M .T)
=
e-BEbare(EH) -BWCEMVIT)
I e grand potential of

e .g. hardcover inhomogeneous ionic fluid
T)

in fixed configuration of
MANI particles &R"g

-

= W = min-rIPIjE
*] Because changes on particles are

&I often of conic nature , it is
convenient to include the

electrostatic



⑨
piece of the particle-particle interaction in &[PIEN],
That is

,
we arrive at the Poisson -Bolzmann functional

(non-electrostatic part is ideal gast
&veIR"] =Eff

+] Meanfidstatic

+kT] fargo)[em() - 11 non-electrostatic ideal gas
contribution-

- StZTmo-Vet(z)]po(r) , External potential .

Q(r) : external charge distribution.

g(r) =&zep() ionic charge distribution.

With above formalism one

* can compute two charged
walls

er

I
Teff(HiMT) .

↑
repel each
other

I - in an electrolyte

↑ es , due to

p+
+g- 32964 ~

osmotic pressur

DisgressZe

I - Peat(r) =zil)
(R >2)

= (R(2a)
low surface potential , linear superposition approximation



⑩
Charge stabilisation of colloidal suspensions I.
-[ potential barrier prevents

particles getting into
each others primary minimum-t secondaryminio

hard core. increasingsaltconcentrationsaltingona

Charge Stabilisation is Kinetic , not thermodynamica


